基于迁移卷积神经网络的故障预测方法
成果类型:: 发明专利
发布时间: 2023-11-08 11:08:23
本发明提供了基于迁移卷积神经网络的故障预测方法,该方法首先通过将时域信号转化为RGB图像,然后通过对卷积神经网络进行迁移,获得迁移后的卷积神经网络,然后利用该迁移卷积神经网络对故障进行预测,由此解决故障预测精度低的技术问题。
本发明属于神经网络故障预测领域,并公开了基于迁移卷积神经网络的故障预测方法。该方法包括下列步骤:(a)将故障类型进行编号,采集待预测对象的时域信号并获取初始故障类型编号,将时域信号转化为RGB图像;(b)将深度残差网络模型的FC层初始化并添加分类器,获得改进的网络模型;(c)将RGB图像输入网络模型训练FC层和分类器,不断更新FC层的权重值,当获得的故障类型编号与初始故障类型编号相近时对应的权重值为所需的新的权重值,并完成网络模型的迁移;(d)将待预测对象的RGB图像输入迁移卷积神经网络模型中,输出预测故障类型编号。通过本发明,所采用的迁移卷积神经网络模型结构简单、预测速度快,预测结果准确。
近年来许多研究人员对故障预测进行了研究,作为一种典型的故障预测方法,数据驱动故障预测可以利用历史数据建立故障模式,而不需要任何明确的模型或信号症状,这非常适合于复杂系统,随着智能制造业的快速发展,机器设备产生的数据得到了很好的提升和收集,机械大数据为制造业实现无故障过程带来了新的机遇,数据驱动的故障预测越来越受到研究人员和工程师的重视,要找到更强大的数据驱动的故障预测方法至关重要。从大量历史数据中进行学习是数据驱动故障预测方法提取特征的一个关键,主成分分析(PCA),偏最小二乘法(PLS)和独立分量相关(ICA)等统计分析方法越来越受到工业过程监测的重视,机器学习也是数据驱动故障预测领域最流行的方法之一,如支持向量机(SVM),模糊逻辑和人工神经网络等,然而,机器学习方法的上限性能取决于手工特征,但是要预先设计好的手工特征是困难和耗尽的;深度学习(DL)作为机器学习领域的一个新兴领域,克服了上述缺点,可以自动学习到原始数据的分层表示特征,但由于故障预测领域标注样本数量的限制以及DL模型的巨大模型复杂度,故障预测DL模型的深度只能达到5个隐层,与具有数百个隐藏层的ImageNet的基准CNN模型相比,相对较浅,与ImageNet中的千万注释图像相比,制造中的样本量很小,没有大量的训练数据集,很难训练出类似于ImageNet的深度卷积神经网络,致使最终获得故障预测结果准确度低。
华中科技大学(Huazhong University of Science and Technology),简称华中大、华科大 ,位于湖北省武汉市,是中华人民共和国教育部直属的综合性研究型全国重点大学、位列国家“双一流”“985工程”“211工程”、入选“强基计划”“111计划”、卓越工程师教育培养计划、卓越医生教育培养计划、国家大学生创新性实验计划、国家级大学生创新创业训练计划、国家建设高水平大学公派研究生项目、国家级新工科研究与实践项目、基础学科拔尖学生培养计划2.0,是学位授权自主审核单位、全国深化创新创业教育改革示范高校、一流网络安全学院建设示范项目高校、中国政府奖学金来华留学生接收院校、教育部来华留学示范基地,为中欧工程教育平台成员和医学“双一流”建设联盟 、国际应用科技开发协作网 、全球能源互联网大学联盟成员。
1、本发明通过将时域信号转换为RGB格式图像,该转换过程简单,不需要任何预定义的参数,避免依靠专家经验而带来的误差,保持DL的特征表示能力,使时域信号能够同图像信号一般进行处理,有助于特征自动提取与训练;
2、本发明通过采用采用Dropout的方法和L2正则化的方法训练FC层的权重值,在训练过程中以一定概率随机地去激活神经元,防止过度配合,采用该Dropout方法训练的过程更好的泛化;
3、本发明提供的故障预测方法,所采用的迁移卷积神经网络模型结构简单、只需将现有模型进行少部分改进就可以应用于不同的故障诊断领域,预测速度快,预测结果准确。
本专利成果采用技术转让,技术入股,技术合作等成果转化方式,希望进一步实现该专利的有益效果,有兴趣皆可面议。