本发明公开了一种无监督的水下图像增强方法及相关设备,所述方法包括:在公开数据集中获取水下图像数据,所述水下图像数据包括训练数据集和测试数据集,将所述水下图像数据进行归一化处理和缩放处理;构建神经网络模型,使用处理后的所述训练数据集来训练所述神经网络模型,所述神经网络模型包括参数估计网络和图像增强网络;将处理后的所述测试数据集输入到已训练好的所述神经网络模型中,所述参数估计网络和所述图像增强网络根据处理后的所述测试数据集输出水下增强图像。本发明通过图像增强将失真的水下图像恢复为颜色均衡、细节丰富、对比度好的图像,实现了通过无监督的方法增强不同水体环境下的图像数据,泛用性更好。
1.一种无监督的水下图像增强方法,其特征在于,所述无监督的水下图像增强方法包括:
在公开数据集中获取水下图像数据,所述水下图像数据包括训练数据集和测试数据集,将所述水下图像数据进行归一化处理和缩放处理;
构建神经网络模型,使用处理后的所述训练数据集来训练所述神经网络模型,所述神经网络模型包括参数估计网络和图像增强网络;
将处理后的所述测试数据集输入到已训练好的所述神经网络模型中,所述参数估计网络和所述图像增强网络根据处理后的所述测试数据集输出水下增强图像。
2.根据权利要求1所述的无监督的水下图像增强方法,其特征在于,所述在公开数据集中获取水下图像数据,所述水下图像数据包括训练数据集和测试数据集,将所述水下图像数据进行归一化处理和缩放处理,具体包括:
从预设的两个公开数据集中获取所述水下图像数据,将所述水下图像数据中第一预设数量的图像作为所述训练数据集,将所述水下图像数据中第二预设数量的图像作为所述测试数据集;
将所述训练数据集和所述测试数据集进行归一化处理,并采用min-max标准化方法将所述训练数据集和所述测试数据集的像素值由0-255缩放至0-1区间。
随着海洋信息技术的发展,水下目标探测技术的应用也日益广泛,涉及海底光缆的铺设、水下石油平台的建立与维修、海底沉船的打捞、海洋生态系统的研究等领域。水下目标探测对成像及后期处理能力提出了很高要求,如何正确识别图像中包含的物体及位置是水下机器人及机器学习领域的一个常见问题。在传统深度学习对水下图像增强的过程中,通常需要成对或非成对的清晰-退化图像进行监督训练,或需要借助可提供深度信息的工业相机进行图像恢复。
中国科学院深圳先进技术研究院提升了粤港地区及我国先进制造业和现代服务业的自主创新能力,推动我国自主知识产权新工业的建立,成为国际一流的工业研究院。 深圳先进院目前已初步构建了以科研为主的集科研、教育、产业、资本为一体的微型协同创新生态系统,由九个研究平台,国科大深圳先进技术学院,多个特色产业育成基地、多支产业发展基金、多个具有独立法人资质的新型专业科研机构等组成。开展先进技术研究,促进科技发展。信息、电子、通讯技术研究新材料、新能源技术研究高性能计算、自动化、精密机械研究生物医学与医疗仪器研究相关学历教育、博士后培养与学术交流。
本发明中,在公开数据集中获取水下图像数据,所述水下图像数据包括训练数据集和测试数据集,将所述水下图像数据进行归一化处理和缩放处理;构建神经网络模型,使用处理后的所述训练数据集来训练所述神经网络模型,所述神经网络模型包括参数估计网络和图像增强网络;将处理后的所述测试数据集输入到已训练好的所述神经网络模型中,所述参数估计网络和所述图像增强网络根据处理后的所述测试数据集输出水下增强图像。本发明通过图像增强将失真的水下图像恢复为颜色均衡、细节丰富、对比度好的图像,实现了通过无监督的方法增强不同水体环境下的图像数据,泛用性更好。
技术合作
对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。