本发明适用于人脸识别技术领域,提供了一种人脸识别方法,所述方法包括:对原始的测试人脸图像进行预处理;采用光栅扫描的方式,基于多尺度的局部二值模型LBP描述子,提取出所述测试人脸图像的原始码字;统计每个原始码字的频率分布,基于学习的LBP编码对原始码字进行编码得到一组新码字,基于编码后生成的新码字,计算所述测试人脸图像的LBP特征;根据所述测试人脸图像的LBP特征对所述测试人脸图像进行识别。本发明,可以使得编码生成的新的码字的概率分布更加均匀,因而最终的编码空间更加紧凑,具有更高的信息熵,从而保留更多的原始信息,更具有辨识力。
一种人脸识别方法,其特征在于,所述方法包括:A、对原始的测试人脸图像进行预处理;B、采用光栅扫描的方式,基于多尺度的局部二值模型LBP描述子,提取出所述测试人脸图像的原始码字;C、统计每个原始码字的频率分布,采用基于学习的LBP编码对所述原始码字进行编码得到一组新码字,基于编码后生成的新码字,计算所述测试人脸图像的LBP特征;D、根据所述测试人脸图像的LBP特征对所述测试人脸图像进行识别;在步骤C之后,还包括:采用级联子空间训练模型对所述测试人脸图像的LBP特征进行处理,得到与所述测试人脸图像的LBP特征对应的低维特征;根据所述低维特征对所述测试人脸图像进行识别;在所述采用级联子空间训练模型对所述测试人脸图像的LBP特征进行处理,得到与所述测试人脸图像的LBP特征对应的低维特征之前或之后,还包括:根据步骤A、B、C所述的方法获得训练人脸图像的LBP特征;采用级联子空间训练模型对所述训练人脸图像的LBP特征进行处理,得到与所述训练人脸图像的LBP特征对应的低维特征。
早在上世纪60年代,经历了半个世纪之久的发展,到如今,人脸识别已进入国内外的高速发展期。人脸识别能够快速发展主要在于其能够快速的带动相关学科的进步,由于人脸识别是一个非常复杂且涉及多方面技术的结合体,通常会涉及到最经典的图像模式处理、计算机视觉、计算机图形学、科学方面的认识、生理学、心理学、AI、数学逻辑计算等多种学科的结合交叉,搭成一个全新的领域,应用于实际生活中,结合AI,可以引领社会进入更高层次的生活条件中。同时,人脸识别技术具有相当大的应用潜力,目前,人脸识别的应用领域非常广泛,例如手机人脸解锁、门锁人脸识别、公安运用人脸识别破案以及吃饭“刷脸”等,给人们的生活也带来了极大的便利。因此,人脸识别的研究具有非常实用的意义。
中国科学院深圳先进技术研究院提升了粤港地区及我国先进制造业和现代服务业的自主创新能力,推动我国自主知识产权新工业的建立,成为国际一流的工业研究院。 深圳先进院目前已初步构建了以科研为主的集科研、教育、产业、资本为一体的微型协同创新生态系统,由九个研究平台,国科大深圳先进技术学院,多个特色产业育成基地、多支产业发展基金、多个具有独立法人资质的新型专业科研机构等组成。开展先进技术研究,促进科技发展。信息、电子、通讯技术研究新材料、新能源技术研究高性能计算、自动化、精密机械研究生物医学与医疗仪器研究相关学历教育、博士后培养与学术交流。
本申请实施例采取的又一技术方案为:一种存储介质,存储有处理器可运行的程序指令,所述程序指令用于执行所述人脸识别方法。
相对于现有技术,本申请实施例产生的有益效果在于:本申请实施例的人脸识别方法通过对人脸图像进行灰度以及降纬处理后,对人脸图片进行人脸特征提取,生成特征矩阵,并利用BP神经网络采用逆向传播算法进行人脸识别,能极大的提高人脸识别效率以及识别精度。
技术合作
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本申请中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本申请所示的这些实施例,而是要符合与本申请所公开的原理和新颖特点相一致的最宽的范围。