您所在的位置: 成果库 基于独立分量分析和奇异值分解的非局部TV图像去噪方法

基于独立分量分析和奇异值分解的非局部TV图像去噪方法

发布时间: 2024-10-29

来源: 科技服务团

基本信息

合作方式: 技术转让
成果类型: 发明专利
行业领域:
生物与新医药技术,医药生物技术
成果介绍
本发明要克服现有技术的噪声对像素相似度权重函数的干扰大、像素相似度权重赋值的准确性低的缺点,提出一种基于独立分量分析和奇异值分解的非局部TV图像去噪方法。
成果亮点
一种基于独立分量分析和奇异值分解的非局部TV图像去噪方法,为了减少噪声对像素相似度权重函数的干扰,提高像素相似度权重赋值的准确性,构建了一种基于待去噪图像中各领域图像块最大奇异值的新型像素相似度权重函数,用于NLTV模型,从而得到新的NLTV模型。通过新的NLTV方法对输入的唯一含噪图像u0进行初步去噪,得到另一含噪图像u1,把初步去噪图像u1认为是另一幅含噪输入图像,在获得的u1、u0基础上应用ICA方法对输入图像u0去噪,得到ICA方法去噪后的图像u2,提高了ICA在图像去噪领域的应用价值。为了得到更好的去噪效果,对图像u2再一次应用新的NLTV方法去噪,得到最后去噪图像ufinal。
团队介绍
浙江工业大学是东部沿海地区第一所省部共建高校、首批国家“高等学校创新能力提升计划”(2011计划)协同创新中心牵头高校和浙江省首批重点建设高校,坐落于中国历史文化名城、风景旅游胜地杭州。学校坚持立德树人根本任务,以拔尖创新人才为引领、高级应用型人才为主体、复合型人才为特色,大力培养德智体美劳全面发展,富有家国情怀、国际视野、创新精神和实践能力的行业精英和领军人才。
成果资料
产业化落地方案
点击查看