为了克服已有基因特征提取方法的降维速度较慢、无法最大程度保留基因特 征的不足,本发明提供一种最大程度保留基因特征并实现快速降维的基于流形学 习与闭环深度卷积双网络模型的基因特征提取方法。
一种基于流形学习与闭环深度卷积双网络模型的基因特征提取方法,包括以下步骤:第一步,基于流形学习的癌症关联基因特征粗提取,第二步,基于闭环深度卷积双网络结构的基因特征精细提取,过程如下:采用正向卷积神经网络和反向卷积神经网络相结合的双网络结构,利用卷积神经网络的特征提取能力对基因表达数据集进行深度抽象,最终投影出关键特征;反向卷积神经网络实现关键特征的逆投影。本发明提供一种最大程度保留基因特征并实现快速降维的基于流形学习与闭环深度卷积双网络模型的基因特征提取方法。
浙江工业大学是东部沿海地区第一所省部共建高校、首批国家“高等学校创新能力提升计划”(2011计划)协同创新中心牵头高校和浙江省首批重点建设高校,坐落于中国历史文化名城、风景旅游胜地杭州。学校坚持立德树人根本任务,以拔尖创新人才为引领、高级应用型人才为主体、复合型人才为特色,大力培养德智体美劳全面发展,富有家国情怀、国际视野、创新精神和实践能力的行业精英和领军人才。
评价单位:- (-)
评价时间:2024-10-24
综合评价
该项目技术思路方向很好,未来市场空间大,有利于当前政策要求,转化成熟度很高,值得支持推广。建议强化相应产品开发,加大产业链开发力度。技术转让,所需资金需双方协商,此项技术想尽快落地,希望具备此项技术研发的技术方,能够尽快承接次项目。
查看更多>