成果介绍
本发明涉及一种基于高斯混合模型和指数混合模型的齿轮健康指标构建方法,属于齿轮健康状态评估技术领域。
成果亮点
该方法包括:采集相应工况下的齿轮全生命周期振动信号,并进行去噪声和FFT处理;分别构建并训练高斯混合模型和指数混合模型,然后分别选取去噪声和FFT处理后的前S个健康数据,利用EM算法来分别训练高斯混合模型和指数混合模型,获得对应模型下的基准分布;其次利用不同模型下的基准分布和整个生命周期数据的分布来计算时域和频域下的分布重合度值;最后根据分布重合度值获得时域和频域下健康指标,并根据健康指标的单调性来自适应加权获得最后的齿轮健康指标。本发明能提高齿轮健康指标的适用性。
团队介绍
重庆大学(ChongqingUniversity,CQU),简称“重大”,是中华人民共和国教育部直属,由教育部、重庆市、国家国防科技工业局共建的全国重点大学,位列国家“双一流”、“211工程”、“985工程”,入选“珠峰计划”、“强基计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”、“卓越工程师教育培养计划”、“卓越法律人才教育培养计划”、国家建设高水平大学公派研究生项目、中国政府奖学金来华留学生接收院校、教育部来华留学示范基地,为卓越大学联盟、中波大学联盟、一带一路高校联盟、“长江—伏尔加河”高校联盟、CDIO工程教育联盟、中国高等戏剧教育联盟成员单位、“国优计划”首批试点高校。
成果资料