您所在的位置: 成果库 基于支持向量机的剪接位点识别方法

基于支持向量机的剪接位点识别方法

发布时间: 2023-07-11

来源: 科技服务团

基本信息

合作方式: 技术服务
成果类型: 发明专利
行业领域:
高新技术改造传统产业
成果介绍
本发明涉及一种基于支持向量机的剪接位点识别方法,包括:构建数据集,数据集包括训练数据集及测试数据集;提取训练数据集的剪接位点序列的特征向量,记为第一特征向量;提取训练数据集的剪接位点上游序列及下游序列的特征向量,记为第二特征向量;根据第一特征向量及第二特征向量选取所述训练数据集的特征向量,记为第三特征向量;根据第三特征向量,构建SVM分类器;根据分类器识别所述测试数据集的剪接位点。本发明采用训练数据集构建马尔可夫模型,用该模型参数将训练数据集及测试数据集转换成特征向量,并将该特征向量和剪接位点上、下游密码子使用偏性的特征向量,进行线性组合,以提取剪接位点邻近序列中更多信息,从而提高分类精度。
成果亮点
一种基于支持向量机的剪接位点识别方法,其特征在于,包括下述步骤:构建数据集,所述数据集包括训练数据集及测试数据集,所述训练数据集包括剪接位点序列,所述剪接位点序列包括真剪接位点序列和假剪接位点序列,所述真剪接位点序列即为正样本,所述假剪接位点序列即为负样本;提取所述训练数据集的剪接位点序列的特征向量,记为第一特征向量;提取所述训练数据集的剪接位点上游序列及下游序列的特征向量,记为第二特征向量;根据所述第一特征向量及第二特征向量选取所述训练数据集的特征向量,记为第三特征向量;根据所述第三特征向量,构建SVM分类器;根据所述分类器识别所述测试数据集的剪接位点;其中,提取所述训练数据集的剪接位点上游序列及下游序列的特征向量,记为第二特征向量,包括下述步骤:构造公式其中,Cjk是氨基酸j对应的密码子k在所述剪接位点序列中出现的次数,nj是氨基酸j对应的密码子个数,fjk为密码子使用偏性
团队介绍
中国科学院深圳先进技术研究院提升了粤港地区及我国先进制造业和现代服务业的自主创新能力,推动我国自主知识产权新工业的建立,成为国际一流的工业研究院。 深圳先进院目前已初步构建了以科研为主的集科研、教育、产业、资本为一体的微型协同创新生态系统,由九个研究平台,国科大深圳先进技术学院,多个特色产业育成基地、多支产业发展基金、多个具有独立法人资质的新型专业科研机构等组成。开展先进技术研究,促进科技发展。信息、电子、通讯技术研究新材料、新能源技术研究高性能计算、自动化、精密机械研究生物医学与医疗仪器研究相关学历教育、博士后培养与学术交流。
成果资料
产业化落地方案
点击查看