成果介绍
本发明适用于计算机视觉技术领域,提供了一种图像分类的方法及装置。该方法包括:通过深度卷积神经网络提取输入图像的中间卷积层的特征以及全连接层的特征;对提取的所述中间卷积层的特征进行预处理,并对预处理后的中间卷积层的特征进行编码,以形成图像表示的中层语义特征,对提取的全连接层的特征进行归一化处理后作为图像表示的高层语义特征;将所述图像表示的中层语义特征和所述图像表示的高层语义特征进行融合;基于融合后的特征进行图像分类。通过本发明,可有效提高图像内容识别的准确率,进而提高图像分类的准确率。
成果亮点
一种图像分类的方法,其特征在于,所述方法包括:通过卷积神经网络提取输入图像的中间卷积层的特征以及全连接层的特征;对提取的所述中间卷积层的特征以及全连接层的特征进行预处理,并对预处理后的中间卷积层的特征进行编码,以形成图像表示的中层语义特征,对提取的全连接层的特征进行归一化处理后作为图像表示的高层语义特征;将所述图像表示的中层语义特征和所述图像表示的高层语义特征进行融合;基于融合后的特征进行图像分类。
团队介绍
中国科学院深圳先进技术研究院提升了粤港地区及我国先进制造业和现代服务业的自主创新能力,推动我国自主知识产权新工业的建立,成为国际一流的工业研究院。 深圳先进院目前已初步构建了以科研为主的集科研、教育、产业、资本为一体的微型协同创新生态系统,由九个研究平台,国科大深圳先进技术学院,多个特色产业育成基地、多支产业发展基金、多个具有独立法人资质的新型专业科研机构等组成。开展先进技术研究,促进科技发展。信息、电子、通讯技术研究新材料、新能源技术研究高性能计算、自动化、精密机械研究生物医学与医疗仪器研究相关学历教育、博士后培养与学术交流。
成果资料
产业化落地方案