成果介绍
本发明公开了一种基于松弛化散度函数知识蒸馏的视频异常行为识别方法,该方法使得教师网络和学生网络的输出可以更加松弛的匹配,以提高知识的蒸馏效果。
成果亮点
具体实施方法为:首先从全部数据集中随机提取出连续的视频图片并进行预处理作为训练样本;然后送入本发明提出的教师网络中进行训练,得到网络的最优参数;然后利用教师网络的最优参数来蒸馏训练学生网络;由于教师网络和学生网络存在较大的容量差异,我们使用本发明提出的松弛化散度函数对两个网络的输出置信度进行匹配;然最后使用软损失和硬损失作为联合损失函数,对学生网络的误差进行反向传播,进而优化学生网络的参数,以达到最优。
团队介绍
罗仁泽,谭亮,林虹宇,刘恒,罗任权,邓治林,余泓,李华督
成果资料