一种基于K-means聚类拟合的显著性检测优化方法
发布时间: 2021-10-29
来源: 科技服务团
基本信息
本发明涉及一种基于K-means聚类拟合的显著性检测优化方法,包括以下步骤:步骤S1:提取图像的场景GIST特征;步骤S2:提取图像的颜色直方图特征;步骤S3:根据场景GIST特征和颜色直方图特征计算图像间的相似性;步骤S4:根据图像间的相似性对图像集合进行K-means聚类,分成k个相互独立的图像簇;步骤S5:计算每个图像簇的拟合模型;步骤S6:判断新的输入图像所属的图像簇,将该图像簇的拟合模型作用在输入图像的显著性图上进行优化。该方法适用于多种显著性检测算法的优化,优化效果明显。